Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon.

نویسندگان

  • Derek C Newton
  • Sian C Bevan
  • Stephen Choi
  • G Brett Robb
  • Adam Millar
  • Yang Wang
  • Philip A Marsden
چکیده

Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA diversity has profound effects on the translation of neuronal nitric oxide synthase.

A comprehensive analysis of the structure of neuronal nitric oxide synthase (nNOS; EC 1.14.13.39) mRNA species revealed NOS1 to be the most structurally diverse human gene described to date in terms of promoter usage. Nine unique exon 1 variants are variously used for transcript initiation in diverse tissues, and each is expressed from a unique 5'-flanking region. The dependence on unique genom...

متن کامل

Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase.

Nitric oxide (NO) functions as an intercellular messenger and mediates numerous biological functions. Among the three isoforms of NO synthase that produce NO, the ubiquitously expressed neuronal NO synthase (nNOS) is responsible for a large part of NO production, yet its regulation is poorly understood. Recent reports of two alternative spliceforms of nNOS in the mouse and in man have raised th...

متن کامل

Alternatively spliced neuronal nitric oxide synthase mediates penile erection.

A key role for nitric oxide (NO) in penile erection is well established, but the relative roles of the neuronal NO synthase (nNOS) versus endothelial forms of NOS are not clear. nNOS- and endothelial NOS-deficient mice maintain erectile function and reproductive capacity, questioning the importance of NO. Alternatively, residual NO produced by shorter transcripts in the nNOS(-/-) animals might ...

متن کامل

Trans-splicing enhances translational efficiency in C. elegans.

Translational efficiency is subject to extensive regulation. However, the factors influencing such regulation are poorly understood. In Caenorhabditis elegans, 62% of genes are trans-spliced to a specific spliced leader (SL1), which replaces part of the native 5' untranslated region (5' UTR). Given the pivotal role the 5' UTR plays in the regulation of translational efficiency, we hypothesized ...

متن کامل

Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant.

We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1% O2). Ca-dependent NO synthase activity was increased in endothelium-den...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2003